Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Robot ; 9(89): eadi9762, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630805

RESUMO

Caves and lava tubes on the Moon and Mars are sites of geological and astrobiological interest but consist of terrain that is inaccessible with traditional robot locomotion. To support the exploration of these sites, we present ReachBot, a robot that uses extendable booms as appendages to manipulate itself with respect to irregular rock surfaces. The booms terminate in grippers equipped with microspines and provide ReachBot with a large workspace, allowing it to achieve force closure in enclosed spaces, such as the walls of a lava tube. To propel ReachBot, we present a contact-before-motion planner for nongaited legged locomotion that uses internal force control, similar to a multifingered hand, to keep its long, slender booms in tension. Motion planning also depends on finding and executing secure grips on rock features. We used a Monte Carlo simulation to inform gripper design and predict grasp strength and variability. In addition, we used a two-step perception system to identify possible grasp locations. To validate our approach and mechanisms under realistic conditions, we deployed a single ReachBot arm and gripper in a lava tube in the Mojave Desert. The field test confirmed that ReachBot will find many targets for secure grasps with the proposed kinematic design.

2.
Sensors (Basel) ; 23(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36850551

RESUMO

This work presents a modular approach to the development of strain sensors for large deformations. The proposed method separates the extension and signal transduction mechanisms using a soft, elastomeric transmission and a high-sensitivity microelectromechanical system (MEMS) transducer. By separating the transmission and transduction, they can be optimized independently for application-specific mechanical and electrical performance. This work investigates the potential of this approach for human health monitoring as an implantable cardiac strain sensor for measuring global longitudinal strain (GLS). The durability of the sensor was evaluated by conducting cyclic loading tests over one million cycles, and the results showed negligible drift. To account for hysteresis and frequency-dependent effects, a lumped-parameter model was developed to represent the viscoelastic behavior of the sensor. Multiple model orders were considered and compared using validation and test data sets that mimic physiologically relevant dynamics. Results support the choice of a second-order model, which reduces error by 73% compared to a linear calibration. In addition, we evaluated the suitability of this sensor for the proposed application by demonstrating its ability to operate on compliant, curved surfaces. The effects of friction and boundary conditions are also empirically assessed and discussed.


Assuntos
Eletricidade , Deformação Longitudinal Global , Humanos , Calibragem , Fricção , Coração
3.
Adv Mater ; : e2210713, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827651

RESUMO

Artificial muscles enable the design of soft implantable devices which are poised to transform the way we mechanically support the heart today. Heart failure is a prevalent and deadly disease, which is treated with the implantation of rotary blood pumps as the only alternative to heart transplantation. The clinically used mechanical devices are associated with severe adverse events, which are reflected here in a comprehensive list of critical requirements for soft active devices of the future: low power, no blood contact, pulsatile support, physiological responsiveness, high cycle life, and less-invasive implantation. In this review, prior art in artificial muscles for their applicability in the short and long term is investigated and critically evaluated. The main challenges regarding the effectiveness, controllability, and implantability of recently proposed actuators are highlighted and the future perspectives for attachment, physiological responsiveness, durability, and biodegradability as well as equitable design considerations are explored.

4.
J Med Device ; 16(3): 031009, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35646225

RESUMO

Annuloplasty ring choice and design are critical to the long-term efficacy of mitral valve (MV) repair. DynaRing is a selectively compliant annuloplasty ring composed of varying stiffness elastomer segments, a shape-set nitinol core, and a cross diameter filament. The ring provides sufficient stiffness to stabilize a diseased annulus while allowing physiological annular dynamics. Moreover, adjusting elastomer properties provides a mechanism for effectively tuning key MV metrics to specific patients. We evaluate the ring embedded in porcine valves with an ex-vivo left heart simulator and perform a 150 million cycle fatigue test via a custom oscillatory system. We present a patient-specific design approach for determining ring parameters using a finite element model optimization and patient MRI data. Ex-vivo experiment results demonstrate that motion of DynaRing closely matches literature values for healthy annuli. Findings from the patient-specific optimization establish DynaRing's ability to adjust the anterior-posterior and intercommissural diameters and saddle height by up to 8.8%, 5.6%, 19.8%, respectively, and match a wide range of patient data.

5.
Sci Robot ; 6(61): eabi9773, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910528

RESUMO

Anthropomorphic robotic manipulators have high grasp mobility and task flexibility but struggle to match the practical strength of parallel jaw grippers. Gecko-inspired adhesives are a promising technology to span that gap in performance, but three key principles must be maintained for their efficient usage: high contact area, shear load sharing, and evenly distributed normal stress. This work presents an anthropomorphic end effector that combines those adhesive principles with the mobility and stiffness of a multiphalange, multifinger design. Adhesive suspensions use buckling ribs to deliver shear load sharing and normal compliance in a deployable form factor. We use an elastic foundation model and fundamentals of grasping theory to motivate kinematic changes when shifting from Coulomb friction to adhesive manipulation. These design considerations integrate with the necessary control infrastructure in a prototype called farmHand, on which we perform tests to confirm shear load sharing and demonstrate adhesive use in manipulation beyond pick and place grasping.


Assuntos
Adesivos/química , Materiais Biomiméticos , Teste de Materiais , Adesividade , Algoritmos , Animais , Fenômenos Biomecânicos , Desenho de Equipamento , Lagartos , Robótica , Estresse Mecânico , Torque
6.
J R Soc Interface ; 18(174): 20200730, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33435840

RESUMO

Materials are traditionally tested either by imposing controlled displacements and measuring the corresponding forces, or by imposing controlled forces. The first of these approaches is more common because it is straightforward to control the displacements of a stiff apparatus and, if the material suddenly fails, little energy is released. However, when testing gecko-inspired adhesives, an applied force paradigm is closer to how the adhesives are loaded in practice. Moreover, we demonstrate that the controlled displacement paradigm can lead to artefacts in the assumed behaviour unless the imposed loading trajectory precisely matches the deflections that would occur in applications. We present the design of a controlled-force system and protocol for testing directional gecko-inspired adhesives and show that results obtained with it are in some cases substantially different from those with controlled-displacement testing. An advantage of the controlled-force testing approach is that it allows accurate generation of adhesive limit curves without prior knowledge of the expected behaviour of the material or the loading details associated with practical applications.


Assuntos
Adesivos , Lagartos , Adesividade , Animais
7.
IEEE Trans Haptics ; 13(1): 159-166, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31976906

RESUMO

Limited physical access to target organs of patients inside an MRI scanner is a major obstruction to real-time MRI-guided interventions. Traditional teleoperation technologies are incompatible with the MRI environment and although several solutions have been explored, a versatile system that provides high-fidelity haptic feedback and access deep inside the bore remains a challenge. We present a passive and nearly frictionless MRI-compatible hydraulic teleoperator designed for in-bore liver biopsies. We describe the design components, characterize the system transparency, and evaluate the performance with a user study in a laboratory and a clinical setting. The results demonstrate % difference between input and output forces during realistic manipulation. A user study with participants conducting mock needle biopsy tasks indicates that a remote operator performs equally well when using the device as when holding a biopsy needle directly in hand. Additionally, MRI compatibility tests show no reduction in signal-to-noise ratio in the presence of the device.


Assuntos
Retroalimentação Sensorial , Biópsia Guiada por Imagem/métodos , Imageamento por Ressonância Magnética , Procedimentos Cirúrgicos Robóticos/instrumentação , Procedimentos Cirúrgicos Robóticos/métodos , Robótica , Percepção do Tato , Fenômenos Biomecânicos , Biópsia por Agulha , Desenho de Equipamento , Humanos
8.
J Biomech Eng ; 142(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253992

RESUMO

Few technologies exist that can provide quantitative data on forces within the mitral valve apparatus. Marker-based strain measurements can be performed, but chordal geometry and restricted optical access are limitations. Foil-based strain sensors have been described and work well, but the sensor footprint limits the number of chordae that can be measured. We instead utilized fiber Bragg grating (FBG) sensors-optical strain gauges made of 125 µm diameter silica fibers-to overcome some limitations of previous methods of measuring chordae tendineae forces. Using FBG sensors, we created a force-sensing neochord (FSN) that mimics the natural shape and movement of native chordae. FBG sensors reflect a specific wavelength of light depending on the spatial period of gratings. When force is applied, the gratings move relative to one another, shifting the wavelength of reflected light. This shift is directly proportional to force applied. The FBG sensors were housed in a protective sheath fashioned from a 0.025 in. flat coil, and attached to the chordae using polytetrafluoroethylene suture. The function of the force-sensing neochordae was validated in a three-dimensional (3D)-printed left heart simulator, which demonstrated that FBG sensors provide highly sensitive force measurements of mitral valve chordae at a temporal resolution of 1000 Hz. As ventricular pressures increased, such as in hypertension, chordae forces also increased. Overall, FBG sensors are a viable, durable, and high-fidelity sensing technology that can be effectively used to measure mitral valve chordae forces and overcome some limitations of other such technologies.


Assuntos
Cordas Tendinosas , Valva Mitral , Fibras Ópticas
9.
Eur J Cardiothorac Surg ; 57(3): 535-544, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31638697

RESUMO

OBJECTIVES: Posterior ventricular anchoring neochordal (PVAN) repair is a non-resectional technique for correcting mitral regurgitation (MR) due to posterior leaflet prolapse, utilizing a single suture anchored in the myocardium behind the leaflet. This technique has demonstrated clinical efficacy, although a theoretical limitation is stability of the anchoring suture. We hypothesize that the PVAN suture positions the leaflet for coaptation, after which forces are distributed evenly with low repair suture forces. METHODS: Porcine mitral valves were mounted in a 3-dimensional-printed heart simulator and chordal forces, haemodynamics and echocardiography were collected at baseline, after inducing MR by severing chordae, and after PVAN repair. Repair suture forces were measured with a force-sensing post positioned to mimic in vivo suture placement. Forces required to pull the myocardial suture free were also determined. RESULTS: Relative primary and secondary chordae forces on both leaflets were elevated during prolapse (P < 0.05). PVAN repair eliminated MR in all valves and normalized chordae forces to baseline levels on anterior primary (0.37 ± 0.23 to 0.22 ± 0.09 N, P < 0.05), posterior primary (0.62 ± 0.37 to 0.14 ± 0.05 N, P = 0.001), anterior secondary (1.48 ± 0.52 to 0.85 ± 0.43 N, P < 0.001) and posterior secondary chordae (1.42 ± 0.69 to 0.59 ± 0.17 N, P = 0.005). Repair suture forces were minimal, even compared to normal primary chordae forces (0.08 ± 0.04 vs 0.19 ± 0.08 N, P = 0.002), and were 90 times smaller than maximum forces tolerated by the myocardium (0.08 ± 0.04 vs 6.9 ± 1.3 N, P < 0.001). DISCUSSION: PVAN repair eliminates MR by positioning the posterior leaflet for coaptation, distributing forces throughout the valve. Given extremely low measured forces, the strength of the repair suture and the myocardium is not a limitation.


Assuntos
Insuficiência da Valva Mitral , Prolapso da Valva Mitral , Animais , Cordas Tendinosas/diagnóstico por imagem , Cordas Tendinosas/cirurgia , Hemodinâmica , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Insuficiência da Valva Mitral/cirurgia , Prolapso da Valva Mitral/diagnóstico por imagem , Prolapso da Valva Mitral/cirurgia , Suínos
10.
Elife ; 82019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31385573

RESUMO

Birds land on a wide range of complex surfaces, yet it is unclear how they grasp a perch reliably. Here, we show how Pacific parrotlets exhibit stereotyped leg and wing dynamics regardless of perch diameter and texture, but foot, toe, and claw kinematics become surface-specific upon touchdown. A new dynamic grasping model, which integrates our detailed measurements, reveals how birds stabilize their grasp. They combine predictable toe pad friction with probabilistic friction from their claws, which they drag to find surface asperities-dragging further when they can squeeze less. Remarkably, parrotlet claws can undergo superfast movements, within 1-2 ms, on moderately slippery surfaces to find more secure asperities when necessary. With this strategy, they first ramp up safety margins by squeezing before relaxing their grasp. The model further shows it is advantageous to be small for stable perching when high friction relative to normal force is required because claws can find more usable surface, but this trend reverses when required friction shrinks. This explains how many animals and robots may grasp complex surfaces reliably.


Assuntos
Pé/fisiologia , Atividade Motora , Papagaios/fisiologia , Asas de Animais/fisiologia , Animais , Fenômenos Biomecânicos , Modelos Biológicos
11.
J R Soc Interface ; 16(150): 20180705, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30958166

RESUMO

Surface microstructures in nature enable diverse and intriguing properties, from the iridescence of butterfly wings to the hydrophobicity of lotus leaves to the controllable adhesion of gecko toes. Many artificial analogues exist; however, there is a key characteristic of the natural materials that is largely absent from the synthetic versions-spatial variation. Here we show that exploiting spatial variation in the design of one class of synthetic microstructure, gecko-inspired adhesives, enables one-way friction, an intriguing property of natural gecko adhesive. When loaded along a surface in the preferred direction, our adhesive material supports forces 100 times larger than when loaded in the reverse direction, representing an asymmetry significantly larger than demonstrated in spatially uniform adhesives. Our study suggests that spatial variation has the potential to advance artificial microstructures, helping to close the gap between synthetic and natural materials.


Assuntos
Adesivos/química , Materiais Biomiméticos/química , Fricção , Lagartos , Adesividade , Animais
12.
Ann Thorac Surg ; 108(1): 90-97, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30836099

RESUMO

BACKGROUND: Neochordoplasty is an important repair technique, but optimal anchoring position is unknown. Although typically anchored at papillary muscles, new percutaneous devices anchor the neochordae at or near the ventricular apex, which may have an effect on chordal forces and the long-term durability of the repair. METHODS: Porcine mitral valves (n = 6) were mounted in a left heart simulator that generates physiologic pressure and flow through the valves, and chordal forces were measured with Fiber Bragg Grating strain gauge sensors. Isolated mitral regurgitation was induced by cutting P2 primary chordae, and the regurgitant valve was repaired with polytetrafluoroethylene neochord with apical anchoring, followed by papillary muscle fixation for comparison. In both situations, the neochord was anchored to a customized force-sensing post positioned to mimic the relevant in vivo placement. RESULTS: Echocardiographic and hemodynamic data confirmed that the repairs restored physiologic hemodynamics. Forces on the chordae and neochord were lower for papillary fixation than for the apical fixation (p = 0.003). In addition, the maximum rate of change of force on the chordae and neochordae was higher for apical fixation than for papillary fixation (p = 0.028). CONCLUSIONS: Apical neochord anchoring results in effective repair of mitral regurgitation, albeit with somewhat higher forces on the chordae and neochord suture, as well as an increased rate of loading on the neochord compared with the papillary muscle fixation. These results may guide strategies to reduce stresses on neochordae as well as aid optimal patient selection.


Assuntos
Cordas Tendinosas/cirurgia , Insuficiência da Valva Mitral/cirurgia , Animais , Fenômenos Biomecânicos , Cordas Tendinosas/fisiologia , Ecocardiografia , Hemodinâmica , Insuficiência da Valva Mitral/fisiopatologia , Músculos Papilares/cirurgia , Suínos
13.
IEEE Trans Haptics ; 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29993819

RESUMO

Multilayer electroactive polymer films actuate a small hand-held device that can display tool tip forces during MR-guided interventions. The display produces localized skin stretch at the thumb and index fingertips. Tests confirm that the device does not significantly affect MR imaging and produces detectable stimuli in response to forces measured by a biopsy needle instrumented with optical fibers. Tests with human subjects explored robotic and teleoperated paradigms to detect when the needle contacted a membrane embedded at variable depth in a tissue phantom that approximated the properties of porcine liver. In the first case, naive users detected membranes with a 98.9% success rate as the needle was driven at fixed speed. In the second case, users with experience in needle-based procedures controlled the needle insertion and detected membranes embedded in tissue phantoms with a 98% success rate. In the second experiment, some users detected membranes with very light contact forces, but there was greater subject-to-subject variation.

14.
Sci Robot ; 3(23)2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-33141736

RESUMO

Micro air vehicles (MAVs) are finding use across an expanding range of applications. However, when interacting with the environment, they are limited by the maximum thrust they can produce. Here, we describe FlyCroTugs, a class of robots that adds to the mobility of MAVs the capability of forceful tugging up to 40 times their mass while adhering to a surface. This class of MAVs, which finds inspiration in the prey transportation strategy of wasps, exploits controllable adhesion or microspines to firmly adhere to the ground and then uses a winch to pull heavy objects. The combination of flight and adhesion for tugging creates a class of 100-gram multimodal MAVs that can rapidly traverse cluttered three-dimensional terrain and exert forces that affect human-scale environments. We discuss the energetics and scalability of this approach and demonstrate it for lifting a sensor into a partially collapsed building. We also demonstrate a team of two FlyCroTugs equipped with specialized end effectors for rotating a lever handle and opening a heavy door.

15.
IEEE Trans Haptics ; 10(4): 466-475, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28368831

RESUMO

The purpose of this paper was to determine human movement tracking performance in response to vibrotactile feedback tracking for predictable and unpredictable continuous movement tasks. Thirteen subjects performed elbow flexion/extension and knee flexion/extension continuous movement tracking tasks while receiving tactile stimulation proportional to limb joint position error. Subjects followed 0.2-2.0 Hz desired movements for predictable tasks (single sinusoid) and unpredictable tasks (combination of three sinusoids). Tactile stimulation reaction times at the forearm to induce elbow flexion/extension and at the shank to induce knee flexion/extension were also recorded. Results of frequency tracking showed that 100 percent of participants correctly tracked unpredictable tasks at all frequencies, but only 60-80 percent of participants correctly tracked predictable tasks at frequencies less than 1 Hz and only 20-60 percent of participants correctly tracked predictable tasks at frequencies greater than 1 Hz. Subjects had less phase lag for predictable tasks than for unpredictable tasks. Reaction times at the forearm were 379 ms and at the shank 437 ms. These findings suggest that continuous vibrotactile feedback based on position errors may not be the most effective means of training higher frequency human movements and serve to inform future vibrotactile feedback design related to training human limb movements for predictable and unpredictable tasks.


Assuntos
Antecipação Psicológica , Retroalimentação , Extremidade Inferior , Atividade Motora/fisiologia , Estimulação Física/métodos , Extremidade Superior , Adulto , Feminino , Humanos , Aprendizagem , Extremidade Inferior/fisiologia , Masculino , Percepção de Movimento , Estimulação Física/instrumentação , Tempo de Reação , Incerteza , Extremidade Superior/fisiologia , Vibração
16.
Interface Focus ; 7(1): 20160094, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28163884

RESUMO

Small aerial robots are limited to short mission times because aerodynamic and energy conversion efficiency diminish with scale. One way to extend mission times is to perch, as biological flyers do. Beyond perching, small robot flyers benefit from manoeuvring on surfaces for a diverse set of tasks, including exploration, inspection and collection of samples. These opportunities have prompted an interest in bimodal aerial and surface locomotion on both engineered and natural surfaces. To accomplish such novel robot behaviours, recent efforts have included advancing our understanding of the aerodynamics of surface approach and take-off, the contact dynamics of perching and attachment and making surface locomotion more efficient and robust. While current aerial robots show promise, flying animals, including insects, bats and birds, far surpass them in versatility, reliability and robustness. The maximal size of both perching animals and robots is limited by scaling laws for both adhesion and claw-based surface attachment. Biomechanists can use the current variety of specialized robots as inspiration for probing unknown aspects of bimodal animal locomotion. Similarly, the pitch-up landing manoeuvres and surface attachment techniques of animals can offer an evolutionary design guide for developing robots that perch on more diverse and complex surfaces.

17.
Sci Robot ; 2(7)2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-33157899

RESUMO

Grasping and manipulating uncooperative objects in space is an emerging challenge for robotic systems. Many traditional robotic grasping techniques used on Earth are infeasible in space. Vacuum grippers require an atmosphere, sticky attachments fail in the harsh environment of space, and handlike opposed grippers are not suited for large, smooth space debris. We present a robotic gripper that can gently grasp, manipulate, and release both flat and curved uncooperative objects as large as a meter in diameter while in microgravity. This is enabled by (i) space-qualified gecko-inspired dry adhesives that are selectively turned on and off by the application of shear forces, (ii) a load-sharing system that scales small patches of these adhesives to large areas, and (iii) a nonlinear passive wrist that is stiff during manipulation yet compliant when overloaded. We also introduce and experimentally verify a model for determining the force and moment limits of such an adhesive system. Tests in microgravity show that robotic grippers based on dry adhesion are a viable option for eliminating space debris in low Earth orbit and for enhancing missions in space.

18.
IEEE Trans Biomed Eng ; 63(11): 2278-2285, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26849858

RESUMO

OBJECTIVE: The foot progression angle (FPA) is an important clinical measurement but currently can only be computed while walking in a laboratory with a marker-based motion capture system. This paper proposes a novel FPA estimation algorithm based on a single integrated sensor unit, consisting of an accelerometer, gyroscope, and magnetometer, worn on the foot. METHODS: The algorithm introduces a real-time heading vector with a complementary filter and utilizes a gradient descent method and zero-velocity update correction. Validation testing was performed by comparing FPA estimation from the wearable sensor with the standard FPAs computed from a marker-based motion capture system. Subjects performed nine walking trials of 2.5 min each on a treadmill. During each trial, subjects walked at one speed out of three options (1.0, 1.2, and 1.4 m/s) and walked with one gait pattern out of three options (normal, toe-in, and toe-out). RESULTS: The algorithm estimated FPA to within 0.2 ° of error or less for each walking conditions. CONCLUSION: A novel FPA algorithm has been introduced and described based on a single foot-worn sensor unit, and validation testing showed that FPA estimation was accurate for different walking speeds and foot angles. SIGNIFICANCE: This study enables future wearable systems gait research to assess or train walking patterns outside a laboratory setting in natural walking environments.


Assuntos
Algoritmos , Pé/fisiologia , Monitorização Ambulatorial/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Adolescente , Adulto , Feminino , Humanos , Masculino , Sapatos , Adulto Jovem
19.
IEEE Trans Robot ; 31(1): 1-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26512231

RESUMO

An active needle is proposed for the development of magnetic resonance imaging (MRI)-guided percutaneous procedures. The needle uses a low-transition-temperature shape memory alloy (LT SMA) wire actuator to produce bending in the distal section of the needle. Actuation is achieved with internal optical heating using laser light transported via optical fibers and side coupled to the LT SMA. A prototype, with a size equivalent to a standard 16-gauge biopsy needle, exhibits significant bending, with a tip deflection of more than 14° in air and 5° in hard tissue. A single-ended optical sensor with a gold-coated tip is developed to measure the curvature independently of temperature. The experimental results in tissue phantoms show that human tissue causes fast heat dissipation from the wire actuator; however, the active needle can compensate for typical targeting errors during prostate biopsy.

20.
Interface Focus ; 5(4): 20150015, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26464786

RESUMO

Bioinspiration is an increasingly popular design paradigm, especially as robots venture out of the laboratory and into the world. Animals are adept at coping with the variability that the world imposes. With advances in scientific tools for understanding biological structures in detail, we are increasingly able to identify design features that account for animals' robust performance. In parallel, advances in fabrication methods and materials are allowing us to engineer artificial structures with similar properties. The resulting robots become useful platforms for testing hypotheses about which principles are most important. Taking gecko-inspired climbing as an example, we show that the process of extracting principles from animals and adapting them to robots provides insights for both robotics and biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...